A Stabilized Finite Element Scheme for the Navier-stokes Equations on Quadrilateral Anisotropic Meshes
نویسندگان
چکیده
It is well known that the classical local projection method as well as residual-based stabilization techniques, as for instance streamline upwind Petrov-Galerkin (SUPG), are optimal on isotropic meshes. Here we extend the local projection stabilization for the Navier-Stokes system to anisotropic quadrilateral meshes in two spatial dimensions. We describe the new method and prove an a priori error estimate. This method leads on anisotropic meshes to qualitatively better convergence behavior than other isotropic stabilization methods. The capability of the method is illustrated by means of two numerical test problems. Mathematics Subject Classification. 35Q30, 65N30, 76D05. Received April 18, 2007. Revised February 25, 2008 and March 31, 2008. Published online August 12, 2008.
منابع مشابه
Stabilized Finite Element Methods with Anisotropic Mesh Refinement for the Oseen Problem
with an artificial reaction term cu where c ∼ 1/∆t. We consider stabilized conforming finite element (FE) schemes with equal-order interpolation of velocity/pressure for problem (3)–(4) with emphasis on anisotropic mesh refinement in boundary layers. The classical streamline upwind and pressure stabilization (SUPG/PSPG) techniques for the incompressible Navier-Stokes problem for equal-order int...
متن کاملAnalysis of Locally Stabilized Mixed Finite Element Methods for the Stokes Problem
In this paper, a locally stabilized finite element formulation of the Stokes problem is analyzed. A macroelement condition which is sufficient for the stability of (locally stabilized) mixed methods based on a piecewise constant pressure approximation is introduced. By satisfying this condition, the stability of the Q\Pq, quadrilateral, and the P\-Pq triangular element, can be established.
متن کاملA Mixed Finite Element Method on a Staggered Mesh for Navier-stokes Equations
In this paper, we introduce a mixed finite element method on a staggered mesh for the numerical solution of the steady state Navier-Stokes equations in which the two components of the velocity and the pressure are defined on three different meshes. This method is a conforming quadrilateral Q1 × Q1 − P0 element approximation for the Navier-Stokes equations. First-order error estimates are obtain...
متن کاملA Stabilized Nonconforming Quadrilateral Finite Element Method for the Generalized Stokes Equations
In this paper, we study a local stabilized nonconforming finite element method for the generalized Stokes equations. This nonconforming method is based on two local Gauss integrals, and uses the equal order pairs of mixed finite elements on quadrilaterals. Optimal order error estimates are obtained for velocity and pressure. Numerical experiments performed agree with the theoretical results.
متن کاملMultigrid Solution of the Navier-Stokes Equations on Triangular Meshes
A new Navier-Stokes algorithm for use on unstructured triangular meshes is presented. Spatial discretization of the governing equations is achieved using a finite-element Galerkin approximation, which can be shown to be equivalent to a finite-volume approximation for regular equilateral triangular meshes. Integration to steady state is performed using a multistage time-stepping scheme, and conv...
متن کامل